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MATHEMATICAL MODELLING OF TUBERCULOSIS AND DIABETES CO-INFECTION USING
THE NON- STANDARD FINITE DIFFERENCE SCHEME

EUNICE MUENI MUSYOKI1,∗, WINFRED NDUKU MUTUKU1, NANCY MATENDECHERE IMBUSI2,
AND EVANS OTIENO OMONDI3

ABSTRACT. One of the major health challenge facing Africa and in particular, Kenya is the risk of Tuberculosis
and Diabetes. To understand the dynamics of this, a nine compartmental model for tuberculosis-diabetes co-
infection is formulated. The Non-standard finite difference Scheme (NSFD) of the model is formulated from the
first-order ordinary differential equations (ode) to avoid full implicit schemes that are computationally expensive.
The overly small step sizes in NSFD give the user autonomy in controlling the accuracy of the results, making
it suitable for disease control applications. Numerical simulations with different step sizes of the NSFD for the
TB-Diabetes model are carried out to find the optimal step size, h. A comparison of the best resultant numerical
simulation based on optimal h in NSDF indicates NSFD gives better results when compared with the correspond-
ing first-order ode. The phase-plane analysis revealed that the NSFD formulated for tuberculosis and diabetes
co-infection is generally asymptotically stable. Future studies should consider formulating the proposed model
with varied control parameters such as medication to compare the results with those from first-order ode.

1. INTRODUCTION

Tuberculosis is an ailment that affects both human and animal population. It is caused by mycobacterium
tuberculosis complex (MTBC) which includes seven TB causing mycobacterium [1]. It is an airborne disease
and is transmitted through fluids particles called droplet nuclei of 1-5 microns in diameter generated from
the respiratory system of TB infected individuals when they cough, sneeze, speak, sing or spit [2]. These
droplet nuclei can be suspended in the air for several hours. The World health organization posits that TB
is one of the top ten causes of death in the world [3]. 10.4 million People were exposed to TB in 2016 and
1.7 million died that year [4]. In 2019, it was estimated that 10 million people got infected while 1.4 million
people died [5].

Kenya is a high TB burden country ranked 13th amongst the 22 countries, contributing 80 percent of the
global case load [6]. Diabetes Mellitus on the other hand, is a syndrome of disordered metabolism which
occurs when the pancreas does not produce enough insulin or when the body does not effectively use the
insulin produced. Insulin which is made by the beta cells of the pancreas regulates the blood sugar. If not
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well regulated, one develops hyperglycemia (high sugar levels) which leads to serious damage of various
body systems especially the nerves, blood vessels, eyes and kidneys [7]. The global prevalence of diabetes
over the past few decades has shown a trend of rapid increase and therefore raising a major concern. Two
individuals develop diabetes every 10 seconds and two individuals die of diabetes every 10 seconds as per
the International Diabetes Federation (IDF) statistics [8].

Diabetes is one of the risk factors of tuberculosis due to its immune-compromising effect. It is known
to have an effect on the natural course of TB by making individuals to have a lifetime risk of getting TB
infection activated from the latent stage of infection, getting more severe symptoms, treatment failure, more
lapses as well as more prone to death [9]. There is also likelihood for misdiagnosis of patients with TB who
have diabetes because these patients show typical imaging changes and lesion distribution in the lower
lobe instead of the upper lobe which TB infected patient shows [10]. This has a serious clinical implication
because lesion in the lower lobe is easily misdiagnosed as a tumor or community acquired pneumonia. The
misdiagnosis may delay early treatment of TB and therefore increasing the spread and affecting the control
of transmission [11]. It is therefore very crucial to study TB-diabetes co-infection in order to comply with
the WHO’s end TB blueprint, aiming at reducing TB incidences by 80 percent and the deaths by 90 percent
by 2030.

The analysis of tuberculosis and diabetes co-infection through mathematical modeling has been done
by many authors. For instance [11, 12] similarly analyzed the dynamics for the transmission of TB in
people with diabetes using a SEIR model, and they found a need to look at intervention strategies. In their
study, they proposed chemoprophylaxis treatment for latent TB individuals. They also stressed the need to
treat active TB individuals and control glucose levels for diabetic individuals. Malik developed Moualeu’s
work by looking at the possibility of diabetes being transmitted vertically from newborns and included this
aspect in their model. Pinto et al., [13] studied Diabetes Mellitus and TB Co-existence and their Clinical
implications from a fractional-order perspective.

Differential equations are commonly used to analyze the dynamics of biological systems [14]. These
systems are usually so complex that their exact analytical solutions are usually unattainable. As a result,
numerical methods such as Euler and Runge-Kutta schemes are used to analyze them. Approximation the-
ory is used in constructing these methods, and in ways, finite representation of the functions is produced
[15]. These methods are often prone to numerical instabilities [16]. For that reason, an idea to construct
numerical schemes that do not deal on the approximation problem but rather than look at dynamical in-
formation emerged and was developed by Mickens in 1989 and he named the new scheme non-standard
schemes to distinguish them from the classical ones [17]. These sets of numerical analysis methods of-
fered numerical solutions to differential equations by constructing discrete models whose solutions are of
the same qualitative properties as the corresponding differential equations for all step sizes. The scheme
thereby gave reliable numerical results by preserving the significant properties of their continuous analogs
[18]. Non-standard finite difference schemes have performed better than those that are more prone to
numerical instabilities. In addition, the non-standard finite difference scheme performs better regarding
positivity and boundedness of solutions compared to the standard finite difference schemes [19].

Non-standard difference schemes are popular numerical methods for solving differential equations in-
volving non-local, non-linear, or non-integer operators [20]. The schemes are used when traditional nu-
merical methods fail to provide accurate solutions or become computationally expensive. In epidemiology,
non-standard finite difference schemes have been used to solve models of the spread of infectious diseases.
These schemes are useful when traditional methods fail to capture the non-local and non-linear interactions
between infected and susceptible individuals [21]. In modeling the spread of tuberculosis, non-standard
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finite difference schemes have been used to capture the non-local and non-linear interactions between in-
fected and susceptible individuals [22], these schemes have been used to model the effect of treatment and
quarantine on the spread of the disease.

Furthermore, the construction and analysis of NSFDM to solve mathematical models was conducted
by [23], which has been used by several researchers including [24] who constructed a nonstandard finite
scheme of influenza and were able to show that the differential equation model shows the same proper-
ties as the continuous model. [25] solved the smoking prevalence model for Spain using a Nonstandard
finite difference scheme to which they compared their results with the Euler, Runge-Kutta, and Trapezoidal
methods and concluded that the scheme was a good numerical method in solving mathematical models.

[19] on their study on cholera dynamics showed that in the nonstandard finite difference model, the
results obtained were similar to the case when the basic reproduction number was less than one, and the
equilibrium points were both locally and globally stable regardless of the time step-size used. [26], in their
study on modeling the dynamics of campylobacteriosis represented by a nonlinear system of ordinary
differential equations [26]. The numerical results presented confirmed the applicability of the proposed
NSFDM for biological systems. These methods preserved the solution’s positivity and converged to stabil-
ity properties to the correct equilibria for arbitrary step-sizes, which is not the case with solutions obtained
by other numerical methods, since this is obtained with many difficulties.

In a recent study, by [27] used a fractional order model of tuberculosis and diabetes co-infection to de-
velop a non-standard finite difference scheme to simulate the model. The results showed that the non-
standard scheme provided a more accurate and efficient co-infection dynamics simulation than traditional
schemes.

Contribution. The study is guided by the following contributions:

• The model is an extension of tuberculosis and diabetes co-infection using nonstandard finite differ-
ence scheme to avoid full implicit schemes. The extension is due to computational expensiveness
of associated with continuous-time model due to overly small step sizes needed for accuracy.

• The proposed model extends [12] by including diabetes complications and tuberculosis complica-
tions due to diabetes. This gives the models a holistic understanding of both diseases, which have
significant global challenges. The proposed model allows for a more comprehensive understanding
of the disease’s interactions, their influences on each other, and patient effects on outcomes.

• The proposed model extends the models by [11–13] by incorporating the non-standard finite differ-
ence method to carry out the numerical simulation of the model to compare it with the traditional
simulation of the continuous-time model. This allows the researcher to establish an accurate ap-
proach feasible for real-life application studies.

• The study investigates the optimal value of h (step-size) for NSFD, which is essential for ensur-
ing that the numerical solution converges to the true solution of the TB and diabetes co-infection
problem presented in Figure 1.

The remainder of this paper is organized as follows: Section 2 outlines the formulated model in the paper,
parameter estimation. Section 3 outlines both standard finite difference method and non-standard finite
difference methods, section 4 outlines the numerical solutions and phase-plane analysis, and in Section 5
conclusion to the study is given.

2. METHODS

2.1. Model formulation.
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S The model description that represents the dynamics of tuberculosis and diabetes co-infection is
divided into compartments where the compartment S are healthy individuals, and is increased
by Λ, the recruitment of individuals by birth. It is decreased by λS (individuals getting TB), α1S

(Individuals acquiring Diabetes) and by µS (natural deaths).
Lf The compartment Lf (individuals with fast propagating TB) is increased by pλS (proportion of sus-

ceptible individuals developing a fast propagating TB) and πLs (individuals with slow propagating
TB developing fast propagating TB), and is decreased by µ (natural death), σ1Lf (individuals with
fast propagating TB becoming infectious).

Ls The compartment Ls(individuals with slow propagating TB) is increased by (1− p)λS (susceptible
individuals developing slow propagating TB) and ρ1IT (those infectious and treated individual
getting a slow propagation TB) and is decreased by µLs (natural deaths), λLf (individuals with
slow propagating TB developing fast propagating TB), σ2Ls (individuals with slow propagating TB
becoming infectious), α2Ls (individuals with slow propagating TB acquiring diabetes) and δ1Ls (TB
induced deaths).

IT The compartment IT (TB infectious individuals) is increased by σ2Ls (individuals with slow prop-
agating TB becoming infectious) and σ1Lf (individuals with fast propagating TB becoming infec-
tious) and is decreases by ρ1IT (those infectious and treated gets a slow propagation TB) , µIT
(natural deaths) and δ2IT (TB induced deaths).

DT The compartment DT (individuals with TB and diabetes) and is increased by α2Ls (individuals
with slow propagating TB acquiring diabetes), ηD (individuals with diabetes getting TB) and ρ2IDT

individuals with diabetes but treated of TB becomes exposed to TB. The class is decreased by µDT

(natural death) and σ3DT (individuals becomes infectious of TB).
IDT The compartment IDT (individuals with diabetes and infectious of TB) is increased by σ3DT (indi-

viduals become infectious of TB) and ω2CDT (proportion of individuals with diabetes complications
due to TB). The class is decreased by ρ2IDT (individuals with diabetes but treated of TB becomes
exposed to TB), µ (natural death rate), δ2IDT (disease induced deaths) and θ2IDT (proportion of
individuals progressing to individual with diabetes complications due to TB).

CDT The compartment CDT (individuals with diabetes complications due to TB) and is increased by
θ2IDT (individuals infectious with TB and has Diabetes developing complications) and decreases
by ω2CDT (individuals receiving treatment of the complications), µCDT (natural death) and δ3CDT
(TB induced deaths due to complications).

D The compartment D (individuals with diabetes) is increased by α1S (susceptible individuals ac-
quiring diabetes) and ω1C (individuals with diabetes complications getting treatment of the com-
plications) and is decreased by µD (natural deaths), θ1D ( diabetic individuals getting diabetes
complications) and λD (individuals with diabetes getting TB).

C The compartmentC( diabetic individuals with complications) is increased by θ1D ( diabetic individ-
uals getting diabetes complications) and is decreased by µC (natural deaths), δ3C (induced deaths
due to diabetes complications) and ω1C (individuals with diabetes complications getting treatment
of the complications).
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FIG. 1. TB-Diabetes model

Following the description given in the flow diagram, the model system is described by the first order dif-
ferential equations given in (2.1).

(2.1)

dS

dt
=

recruitment︷︸︸︷
Λ −

LfLs transmission︷︸︸︷
βIS −

D transmission︷︸︸︷
α1S −

natural deaths︷︸︸︷
µS ,

dLf
dt

=

S becomes Lf︷ ︸︸ ︷
pβIS +

Ls becoming Lf︷︸︸︷
πLs −

Lf becoming IT︷ ︸︸ ︷
σ1Lf −

natural deaths︷︸︸︷
µLf ,

dLs
dt

=

S becoming Ls︷ ︸︸ ︷
(1− p)βIS+

IT transforming to Ls︷︸︸︷
ρ1IT −

Ls becoming Lf︷︸︸︷
πLs −

IT becoming Ls︷ ︸︸ ︷
σ2Ls −

Ls becomingDT︷ ︸︸ ︷
α2Ls −

natural deaths︷︸︸︷
µLs ,

dIT
dt

=

Ls becomes infectious︷ ︸︸ ︷
σ2Ls +

Lf becomes infectious︷ ︸︸ ︷
σ1Lf −

IT becomes Ls︷︸︸︷
ρ1IT −

disease induced death︷︸︸︷
δ1IT −

natural deaths︷︸︸︷
µIT ,

dDT

dt
=

Ls become diabetic︷ ︸︸ ︷
α2Ls +

D acquires TB︷︸︸︷
ηD +

IDT exposed to TB︷ ︸︸ ︷
ρ2IDT −

DT become infectious︷ ︸︸ ︷
σ3DT −

natural deaths︷︸︸︷
µDT ,

dIDT
dt

=

DT become infectious︷ ︸︸ ︷
σ3DT +

CDT becomes IDT due to TB︷ ︸︸ ︷
ω2CDT −

IDT is exposed to TB︷ ︸︸ ︷
ρ2IDT −

IDT gets complication due to TB︷ ︸︸ ︷
θ2IDT −

disease induced death︷ ︸︸ ︷
δ2IDT −

natural deaths︷ ︸︸ ︷
µIDT ,

dCDT
dt

=

IDT gets complication due to TB︷ ︸︸ ︷
θ2IDT −

CDT becomes IDT due to TB︷ ︸︸ ︷
ω2CDT −

disease induced death︷ ︸︸ ︷
δ3CDT −

natural deaths︷ ︸︸ ︷
µCDT ,

dD

dt
=

S acquires diabetes︷︸︸︷
α1S +

treated C︷︸︸︷
ω1C −

D gets TB︷︸︸︷
ηD −

D getting complications︷︸︸︷
θ1D −

natural deaths︷︸︸︷
µD ,

dC

dt
=

D getting complications︷︸︸︷
θ1D −

C getting treatment︷︸︸︷
ω1C −

disease induced deaths︷︸︸︷
δ4C −

natural deaths︷︸︸︷
µC ,


where λ = βI and I = IT + IDT , subject to the initial conditions in (2.2).
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(2.2)
S(0) = S0, Ls(0) = Ls0, IT (0) = IT0, Lf (0) = Lf0, IDT = I0DT ,

CDT = C0DT , DT (0) = DT0, D(0) = D0, C(0) = C0.

}
The model (2.1) is an extension of some earlier mentioned modelling studies such as:

(1) [12] by including diabetes complications and tuberculosis complications due to diabetes.
(2) [11–13] by incorporating the non-standard finite difference method to carry out the numerical sim-

ulation of the model.

2.1.1. Assumptions. The following assumptions were made when developing the model:

(1) Recruitment is by birth only.
(2) Individuals in the infectious class are treated and develop latent slow TB to which they can also

become infectious.
(3) No permanent immunity upon treatment.
(4) Individuals with TB complications due to diabetes even when treated are still infectious of TB.

2.2. Parameter estimation. The estimated birth rate in Kenya was reported at 27.67 births per year for 1000
births in 2022 according to the World Bank collection of development indicators [28]. Thus, Λ = 100 per
year. The mortality rate in Kenya was estimated to 5.09 deaths per 1000 people. Thus, µ = 0.00746 per year
While the mortality rate due to TB estimated at 3.875 deaths per 1000 people per year according to World
Health Organization [6]. δ1 = 0.173 Diabetes death rate is estimated at 30.43 per 100000 per year people by
the World health organization [6]. Table 1 shows the description of the parameters used in the model.

TABLE 1. Parameter description and estimation

Description Symbol Value/yr Range Source
TB transmission coefficient β 233

100,000
188 to 266

100,000 [29]
Recruitment rate Λ 8.06

1000 × 53× 106 - Assumed
TB induced mortality δ1

50
100,000

9 to 97 [30]
Diabetic-TB induced mortality δ2

426
100,000

89 to 616
100,000 [31]

Diabetic complication induced mortality for diabetic individuals δ3
10.9

100,000
7.2 to 82.6

100,000 [32, 33]
Diabetes induced mortality δ4

20.9
100000

7.2−82.6
100000 [6]

Rate of Latent fast TB individuals becoming infectious σ1
558

100,000
455 to 662

100,000 [29]
Rate of latent slow TB individuals becomes infectious σ2 3.33% 2% - 5% [34]
Rate of diabetes individuals becoming infectious of TB σ3 14.8% 7.1% - 23.8% [35]
Rate of acquiring diabetes α1 2.2% 1.4% - 3.1% [36]
Rate of acquiring diabetes when exposed to TB α2 2.16 1.19 - 3.93 [37]
Rate of treated TB individuals exposed to TB ρ1 80.1% 78%− 85 [38]
Rate of treated TB-diabetes individuals exposed to TB ρ2 31% 12%− 44% [39]
Rate of treatment of complications due to diabetes ω1 38% 25% - 45% [40]
Rate of treatment of TB complications in diabetic ω2 0.5% 0.1% - 45% [41]
Rate of developing Latent fast TB p 6% 5%–10% [42]
Natural mortality rate µ 8.06

1000
7.9−8.1

1000 [43]
Rate of acquiring complicated diabetes θ1 3.2% 2.8% - 4.4% [44]
Rate of acquiring complicated diabetes due to TB θ2

1
20

1 to 6
20 [45]

Rate of latent slow individuals becoming latent fast π 1220
106 × 0.08 48 to 1299

106 [46]
Rate of diabetic individuals acquiring TB η 112

1134
90 to 130

1134 [45]
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3. MODEL ANALYSIS

In this section, a brief overview of the finite difference scheme as well as the non-finite difference scheme
of the TB-Diabetes model is developed and analyzed.

3.1. Finite Difference Method. Finite difference methods are well known numerical methods that offer
an alternative way of solving differential equations by approximating them with difference equations
[47]. These methods work by discretizing the continuous domain into a finite number of grid points and
approximating the derivatives at each grid point using finite differences. The basic idea behind finite
difference methods is to replace the continuous derivative in a differential equation with a finite difference
approximation that involves only function values at nearby points. The resulting differential equations can
then be solved using standard numerical techniques.

Different types of finite difference methods depend on the order of the difference approximation used to
approximate the derivatives [48]. For example, forward, backward, and central differences can approx-
imate the first derivative, and second-order central differences can approximate the second derivative.
Finite difference methods are widely used in many areas of science and engineering to solve partial differ-
ential equations (PDEs) that describe the behaviour of physical systems [49]. They are relatively simple to
implement and can be used to solve problems that are too complex to solve analytically. However, they can
be computationally expensive, especially for problems with large domains or high-dimensional spaces.

Finite difference formulas can be used at equally spaced grid points which are used to approximate the
differential equations by transforming them into a system of algebraic equations to solve. Therefore in this
method finite differences are used to approximate derivatives. In the transformation of a continuous time
model to a discrete time model, discrete variable k ∈ N replaces the continuous variable t ∈ (o,∞), while
the continuous variable y is replaced by discrete value yk and the resulting equation is a difference equation.

For instance, we are going to use the Taylor’s theorem to introduce the standard finite difference method,
we let h be the step size between the terms of the independent variable x and we also increase x by h to get
the Taylor series expansion:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + .......

The Taylor series expansion solves to:

(3.1) f ′(x) =
f(x+ h)− f((x)

h

(3.2) f ′(x) =
f(x)− f((x− h)

h

(3.3) f ′(x) =
f(x+ h)− f((x− h)

2h

equation (3.1), (3.2) and (3.3) above are referred to as the forward difference, backward difference and
central difference approximation respectively. The central difference approximation is taken as the most ac-
curate of the three because its truncation error is given by O(h2). When using the finite difference Methods,
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the discretization error between the numerical solution and the exact solution is determined by the errors
that arise when changing from a differential operator to a difference operator.

3.1.1. Forward and Backward Euler method. The Euler method is a basic algorithm for numerically solving
first-order differential equations. Leonhard Euler Beethoven of mathematics introduced it in 1768 [50].
Forward and backward Euler methods are two common types of finite difference methods used to
numerically approximate solutions to ordinary differential equations (ODEs). The forward Euler method
is a first-order method that uses a forward difference approximation to the first derivative of the solution at
a given time point [51]. The main difference between these methods is that the forward Euler method uses
the derivative at the current time point to update the solution. In contrast, the backward Euler method uses
the derivative at the next time point [52]. This makes the backward Euler method more stable, especially
for stiff ODEs, but also more computationally expensive because it requires solving a nonlinear equation
at each time step. Both methods have advantages and disadvantages, and the choice of method depends
on the specific problem being solved and the desired level of accuracy and computational efficiency.

Euler idea changes a differential equation to an algebraic one and is used to solve initial valued problem of
the form:

y′(t) = f(t, y(t)), y(t0) = y0

Truncating the Taylor series expansion forms the basis of the Euler method.i.e

(3.4)
y(tn + h) = yn+1 = yn + h

dy

dt

∣∣∣∣
tn,yn

+
1

2
h2 d

2y

dt2

∣∣∣∣
tn,yn

+
1

3!
h3 d

3y

dt3

∣∣∣∣
tn,yn

+ ......

= yn + hf(tn, yn) +O(h2).

Equation (3.4) is the Euler forward equation which is explicit. A method can be explicit if one finds the
yn+j , j = 0, 1, 2, 3, ..., k by recursively determining yn+j iterate from the previous iterate. otherwise, it is
implicit. The Euler backward method is an example of an implicit method. It is obtained by truncating the
Taylor series expansion of the form:

yn = y(tn+1 − h) = y(tn+1)− hdy
dt

∣∣∣∣
tn+1

+
1

2
h2 d

2y

dt2

∣∣∣∣
tn,yn

− ......

yn+1 = yn + hf(tn+1, yn+1) +O(h2).

For the finite difference method to be useful, the convergence property is required as the minimum property.
A numerical method is said to be convergent if the numerical solutions obtained approaches the exact
solution as the step lengths approaches zero. For convergence property, the Euler forward method requires
overly small step sizes. On the other hand, the Euler backward method is computational expensive since it
gives an implicit equation for computation of yn+1 which is time consuming.

3.1.2. Runge-Kutta method. For the numerical solution of a differential equation, the Runge Kutta method
of various orders could be adopted.The Runge Kutta first order are often referred to as the Euler forward
method, where the derivatives of y at the given time step are used to do the extrapolations of the solution at
the next time step [53]. On the other hand, the Runge-Kutta methods extrapolates the solution to the future
time step using the information on the ’slope’ at more than one point. To obtain the Runge-Kutta second
order method, we truncate the Taylor series expansion by including one more term. such as

yn+1 = yn + hf(tn, yn) +
1

2
h2f ′(tn, yn) +O(h3)
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Runge-Kutta simplified the second order method by writing it as:

yn+1 = yn + h(a1k1 + a2K2)

where, k1 = f(tn, yn) and k2 = f(tn + pIh, yn + qIIk1h). The simplified form is easier to use since one is
not needed to calculate f ′(tn, yn). The constants a1, a2, p and q have to be calculated so as the outcome is a
method with local truncation error of O(h3) Runge-Kutta method of higher order can also be developed in
the same way. Commonly used is the Runge Kutta fourth order method. Runge-Kutta fourth order method
is given by (3.5).

(3.5)

k1 = hf(yn, tn)

k2 = hf(yn + k1/2, tn + h/2)

k3 = hf(yn + k2/2, tn + h/2)

k4 = h(yn + k3, tn + h)

yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6


The Runge- Kutta methods are explicit techniques therefore, they are conditionally stable.

3.1.3. Euler method applied to the TB-Diabetes Model. A forward Euler method can be constructed for our
equation model (2.1) by replacing the derivative part with the forward difference approximation (3.4) and
the non-derivative part approximated at base time level. This yields:

(3.6)

Sn+1
1 − Sn

l
= Λ− (α1 + βIn + µ)Sn1 ,

Ln+1
f − Lnf

l
= pβInSn + πLns − (σ1 + µ)Lnf ,

Ln+1
s − Lns

l
= (1− p1)βInSn1 + ρ1I

n
T − πLns − (α2 + σ2 + µ)Lns ,

In+1
T − InT

l
= σ2L

n
s + σ1L

n
f − (ρ1 + δ1 + µ)InT ,

Dn+1
T −Dn

T

l
= α2L

n
s + ηDn + ρ2I

n
DT − (σ3 + µ)Dn

T ,

In+1
DT − InDT

l
= σ3D

n
T + ω2C

n
DT − (ρ2 + δ2 + µ)InDT ,

Cn+1
DT − CnDT

l
= θ2I

n
DT − (ω2 + µ+ δ3)CnDT ,

Dn+1 −Dn

l
= α1S

n + ω1C
n − ηDn − (θ1 + µ)Dn,

Cn+1 − Cn

l
= θ1D

n − (δ4 + ω1 + µ)Cn.


where l > 0 is an increment in time and t ≥ 0 at the points tn = nl(n = o, 1, 2, 3, ....) is discretized in the

standard way. Expression in (3.6) can be rewritten as given in (3.7).
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(3.7)

Sn+1
1 = Sn + (Λ− (α1 + βIn + µ)Sn1 )l,

Ln+1
f = Lnf + (pβInSn + πLns − (σ1 + µ)Lnf )l,

Ln+1
s = Lns + ((1− p1)βInSn1 + ρ1I

n
T − πLns − (α2 + σ2 + µ)Lns )l,

In+1
T = InT + (σ2L

n
s + σ1L

n
f − (ρ1 + δ1 + µ)InT )l,

Dn+1
T = Dn

T + (α2L
n
s + ηDn + ρ2I

n
DT − (σ3 + µ)Dn

T )l,

In+1
DT = InDT + (σ3D

n
T + ω2C

n
DT − (ρ2 + δ2 + µ)InDT )l,

Cn+1
DT = CnDT + (θ2I

n
DT − (ω2 + µ+ δ3)CnDT )l,

Dn+1 = Dn + (α1S
n + ω1C

n − ηDn − (θ1 + µ)Dn)l,

Cn+1 = Cn + (θ1D
n − (δ4 + ω1 + µ)Cn)l.



3.2. Nonstandard Finite Difference Method. This scheme is a set of numerical analysis method developed
by [17] to offer numerical solutions to differential equations by constructing discrete model. However in
2003, he Constructed and analyzed a NSFDM to solve mathematical models using a set of rules [23]. These
rules are mentioned below:

- Rule 1: The discrete and the corresponding derivative should be of the same order, if it occurs otherwise
then there will be instabilities in the solution.

- Rule 2: For the discrete derivatives, the denominator functions should be expressed as a function of
the step-sizes compared with those conventionally used. Considering the equation du

dt = f(t, u, λ), the
convection denominator is given by

du

dt
→ uk+1 − uk

∆t

which is replaced by a non-negative function

φ(h) = h+O(h2), where h = ∆t, t→ tk = hk, u(t)→ uk,

and k is an integer. The exact discrete first derivative is of the form

du

dt
→ uk+1 − ψk

φ(h)
, where φ(h) = 1 +O(h2)

- Rule 3: Non-linear terms should be replaced by nonlocal discrete representations. For example u2 is
replaced by uk+1uk.

- Rule 4: If there is any special condition holding for the solutions of the differential equation, then the
same condition should hold for the finite difference scheme. Otherwise, numerical instabilities may arise.
A good example is the condition of positivity that must be satisfied in modeling infectious diseases. If the
discrete equations allows any negative solutions, then there will be numerical instabilities.
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3.2.1. Non-standard finite Difference Scheme for TB-Diabetes Model. We consider a non-standard finite differ-
ence scheme for the first order system of differential equations in (2.1) for the TB-diabetes model.

Sn+1 − Sn

φ1(h)
= Λ− (α1 + βIn + µ)Sn+1,

Ln+1
f − Lnf
φ2(h)

= pβInSn+1 + πLn+1
s − (σ1 + µ)Ln+1

f ,

Ln+1
s − Lns
φ3(h)

= (1− p)βInSn+1 + ρ1I
n+1
T − (α2 + σ2 + π + µ)Ln+1

s ,

In+1
T − InT
φ4(h)

= σ2L
n+1
s + σ1L

n+1
f − (ρ1 + δ1 + µ)In+1

T ,

Dn+1
T −Dn

T

φ5(h)
= α2L

n+1
s + ηDn+1 + ρ2I

n+1
DT − (σ3 + µ)Dn+1

T ,

In+1
DT − InDT
φ6(h)

= σ3D
n+1
T + ω2C

n+1
DT − (ρ2 + δ2 + µ)In+1

DT ,

Cn+1
DT − CnDT
φ7(h)

= θ2I
n+1
DT − (ω2 + µ+ δ3)Cn+1

DT ,

Dn+1 −Dn

φ8(h)
= α1S

n+1 + ω1C
n+1 − ηDn+1 − (θ1 + µ)Dn+1,

Cn+1 − Cn

φ9(h)
= θ1D

n+1 − (δ4 + ω1 + µ)Cn+1.


where the denominator function is given by:

φj(h, k
∗
j ) =

1− e−k
∗
j h

k∗j
, and k∗j = max {|γi|} , γi =

∂f

∂x

∣∣∣∣
x=xi

with f(x̄) = 0, i = 1, 2, 3, 4, ......, j = 1, 2, 3, 4, ....... Therefore, we have

φ1(h) =
1− e−(α1+µ)h

α1 + µ
, φ2(h) =

1− e−(σ1+µ)h

σ1 + µ
, φ3(h) =

1− e−(α2+σ2+π+µ)h

(α2 + σ2 + π + µ)
,

φ4(h) =
1− e−(ρ1+δ1+µh

ρ1 + δ1 + µ
, φ5(h) =

1− e−(σ3+µ)h

σ3 + µ
, φ6(h) =

1− e−(ρ2+δ2+µ)h

ρ2 + δ2 + µ
,

φ7(h) =
1− e−(ω2+δ3+µ)h

(ω2 + δ3 + µ)
, φ8(h) =

1− e−(θ1+µ)h

(θ1 + µ)
, φ9(h) =

1− e−(δ4+ω1+µ)h

δ4 + ω1 + µ
.


In its explicit form, the system becomes

Sn+1 =
Λφ1(h) + Sn

1 + (λ+ µ+ α1)φ1(h)
, Ln+1

f =
pβInSn+1φ2(h) + πLn+1

s φ2(h) + Ln
f

1 + [(σ1 + µ)]φ2(h)
,

Ln+1
s =

[(1 − p)βInSn+1 + ρ1I
n+1
T ]φ3(h)

1 + (σ2 + µ+ α2 + π)φ3(h)
, In+1

T =
[σ1L

n+1
f + σ2L

n+1
s ]φ4(h) + InT

1 + (ρ1 + δ1 + µ)φ4(h)
,

Dn+1
T =

[α2L
n+1
s + ηDn+1 + ρ2I

n+1
DT ]φ5(h) +Dn

1 + (µ+ σ3)φ5(h)
, In+1

DT =
[σ3D

n+1
T + ω2C

n+1
DT ]φ6(h) + InDT

1 + (θ2 + µ+ ρ2 + δ2)φ6(h)
,

Cn+1
DT =

[θ2I
n+1
DT ]φ7 + Cn

DT

1 + (ω2 + µ+ δ3)φ7(h)
, Dn+1 =

[α1S
n+1 + ω1C

n+1]φ8(h) +Dn

1 + (η + θ1 + µ)φ8(h)
, Cn+1 =

θ1D
n+1φ9(h) + Cn

1 + (ω1 + δ4 + µ)φ9(h)
.


The following theorems shows positivity and boundedness of the system.

Theorem 3.1. If all the initial value as well as parameter values of the discrete system are positive, then the
numerical solution of the system will also be positive for all n ≥ 0.
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Proof. Since the terms in the right-hand side of (3.2.1) are all positive, it follows that this method preserves
the positivity property of our model. �

Theorem 3.2. The NSFD scheme defines the discrete dynamical system on the biologically feasible region

D =

{
(Sn, Lns , L

n
f , I

n
DT , D

n
T , I

n
T , D

n, Cn) ∈ R8
+ : 0 ≤ Sn + Lns + Lnf + InDT +Dn

T + InT +Dn + Cn <
Λ

µ

}
.

Proof. The denominator of the terms in the right-hand side of (3.2.1) are greater than one, and Sn+Lns +Lnf +

InDT +Dn
T +InT +Dn+Cn < Λ

µ inD, it follows that the numerical solutions given out by positivity-preserving
method (3.2.1) are bounded for all t. �

4. NUMERICAL SOLUTIONS

Numerical solutions are often implemented for approximating mathematical problems using numerical
methods, such as finite difference methods [54]. There are used when an analytical solution is either un-
available or not feasible to compute. The approach involves discretizing the problem into a finite number
of points or elements and then approximating the values of the unknowns at these points or elements. The
approximations are typically obtained by solving a system of linear or nonlinear equations, which can be
constructed using various numerical techniques, such as matrix algebra, interpolation, or optimization. The
accuracy of a numerical solution in this paper depends on the size of the discretization, the properties of
the problem, and the precision of the numerical algorithms used to solve the problem.

4.1. Continuous-time Model. To simulate a first-order ordinary differential equation (ODE), we use pa-
rameter values in Table 1 to compute and simulate the state variable in (2.1) via MATLAB’s built-in ode45
solver. This is achieved via the fourth-order Runge-Kutta method. The results presented in Figure 2 are
based on the initial condition of S = LF = Ls = IT = DT = IDT = CDT = D = C = 0.

FIG. 2. The graphical simulation of all compartment in the model diagram in Figure Ls,
IDT , D, and C
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Figure 2 indicated that S (healthy individuals) increases rapidly until an equilibrium is reached around
2000. The graphical simulation of Lf , Ls, IT , DT , IDT , CDT , D and C increases gradually to around 15000,
1900, 170, 2700, 9261, 3800, 4× 106 and 330, respectively.

4.2. NSFD for TB-Diabetes Model. To simulate NSFD, we use parameter values in Table 1 to compute and
simulate the state variable in (3.2.1) via MATLAB’s built-in ode45 solver. This is achieved via the fourth-
order Runge-Kutta method. The results presented in Figure 3 are based on the initial conditions being zeor,
that is S = LF = Ls = IT = DT = IDT = CDT = D = C = 0 and h = [0 : 50] and N = 99.

FIG. 3. Graphical simulation of NSFD for S,Ls, IDT , IDT , CDT , D and C

Figure 3 show that the simulation of the compartments reaches equilibrium points. Therefore, comparing
case-by-case simulations for NSFD and order is inevitable to understand why NSFD was applied in this
work. A comparison of the simulation results of NSFD and continuous-time model is presented in Figure
4.

FIG. 4. Comparison of the graphical simulation of population of compartment for the sys-
tem in (2.1) and (3.2.1).

Figure 4 suggests that for S under the continuous-time model and nsfd exhibit almost similar simulation
results. However, the NSFD results tend to have a similar growth pattern to the continuous-time model,
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which is inconsistent in cases such as S. The equilibrium points in NSFD are also attained at higher values
when compared to their corresponding continuous-time model, except for those of S, Lf and IT . In both
methods, Ls and D have almost similar equilibrium points. A summary of the ablation comparison of
equilibrium points attained in both cases is presented in Table 2.

TABLE 2. Comparison of numerical simulation results obtained based on continuous-time
model and nsfd

Compartment
Higher Equilibrium

continuous-time nsfd
S X

Lf X

Ls X

IT X

DT X

IDT X

CDT X

C X

D X

Table 2 indicates that in many simulations, the continuous-time model simulation gave a higher approx-
imated equilibrium when compared to nsfd results. The observations suggest that NSFD could be more
accurate compared to continuous-time model. The accuracy could be due to overly small step sizes. For
instance, an increase h, give results better results compared to lower have of h as illustrated in Figure 5

FIG. 5. Graphical simulation of population of compartment CDT . h (step size) increases
from left to right.

Figure 5 shows comparison of simulated result for compartment CDT with varied step size h. Lower h
indicate unstable results compared to higher h. However, the increase is limited to optimal results posted
by other compartments. Figure 6 illustrates that optimal value of h is feasible since very higher values
yields results that are uninterpreted.
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(A) h = 20 (B) h = 400 (C) h = 20

(D) h = 50 optimal (E) h = 80 (F) h = 400

FIG. 6. Graphical simulation showing the role of h (step size) in determining the accuracy
in the simulation. h increases from left to right.

Figure 6a and Figure 6c shows that at h = 20, the simulation is not presentable; hence no results are
attained. At higher h = 400 (see Figures 6b and 6f), the simulation, like that of Lf , becomes distorted. Thus,
determining h that gives optimal values for all the compartments was the first stage during the simula-
tion. Unlike the traditional first-order continuous-time model, NSFD offers an alternative to establishing
accurate results by determining optimal h. Thus, scholars could rely on it to provide insightful recommen-
dations for problems such as controlling tuberculosis and diabetes co-infection.

4.3. Phase planes. The phase plane is a graphical representation of the behavior of a dynamic system over
time [55]. It is a two-dimensional plot that shows the relationship between the system’s state variables
and their rates of change. In a phase plane plot, the horizontal axis represents the value of one state
variable, while the vertical axis represents the value of another state variable. The state of the system at any
given time can be represented as a point in the phase plane. The trajectories in the phase plane represent
the behavior of the system over time. The direction and shape of the trajectories can provide important
information about the system’s stability [56]. The slope of the trajectory at any given point represents
the rate of change of the state variables at that point. Different types of behavior can be observed in the
phase plane, such as stable and unstable equilibria. The phase plane is a powerful tool for understanding
the behavior of complex dynamic systems, such as the relationship between tuberculosis and diabetes
co-infection.

The model presented in Figure 1 suggests that there is a possible 11 phase plane plots (S−D, S−Lf , S−Ls,
Lf −Ls, Lf −IT , Ls−IT , Ls−DT , DT −D, DT −IDT , D−C, IDT −CDT ). Figures 7 - 16 present a summary
of the phase plane plots.
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FIG. 7. S-D phase plane FIG. 8. S-Lf phase plane

FIG. 9. S-Ls phase plane FIG. 10. Lf -Ls phase plane

FIG. 11. Lf -IT phase plane FIG. 12. Ls-IT phase plane
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FIG. 13. LS-DT phase plane FIG. 14. DT -D phase plane

FIG. 15. DT -IDT phase plane FIG. 16. CDT -IDT phase plane

FIG. 17. D-C phase plane
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Figure 7 plots a phase plane of S against D representing the state of the system. The system shows
the equilibrium is at ' 0.1. All the arrows point to equilibrium, suggesting a stable system. The arrows
slope towards the positive direction, suggesting S and D are increasing. The arrows converge to a stable
equilibrium, suggesting asymptotically stable S−D. A similar observation in noted in the phase plane plot
between S-Lf in Figure 8, S-Ls phase plane in Figure 9, Lf -IT phase plane in Figure 11, Ls-IT phase plane
in Figure 12, LS-DT phase plane in Figure 13,DT -D phase plane in Figure 14,DT -IDT phase plane in Figure
15, CDT -IDT phase plane in Figure 16 and D-C phase plane in Figure 17. However, in D-C phase plane in
Figure 17, the direction of arrows at the equilibrium is points to the negative, hence D and C is decreasing.
The phase plane between Lf -Ls in Figure 10 is invisible, a a sign that the system is unpredictable.

5. CONCLUSION

Existing studies have formulated many mathematical models for TB-Diabetes co-infection. However, the
discrete TB-Diabetes models still have research value. In the current study, a NSFD scheme for TB-Diabetes
co-infection is formulated. Numerical simulation is presented and compared with the corresponding
first-order ode. The results indicated that the first-order ode gives a higher approximated equilibrium
when compared to NSFD results. The observations suggest that NSFD could be more accurate compared
to first-order ode. The accuracy could be due to overly small step sizes needed to obtain stable equilibrium.
For instance, an increase h gives better results than lower h in the NSFD (see Figure 5). Although larger step
sizes can save computational time and memory, they could not give meaningful results to disease control
recommendations. Therefore, NSFD offers an alternative to establishing accurate results by determining
optimal h. Thus, scholars could rely on it to provide insightful recommendations for problems such as
controlling tuberculosis and diabetes co-infection. The phase plane (see Figures 7-17) stability conditions
for different compartments were presented. The analysis is based on the convergence or divergence of
the arrows from the equilibrium. The results indicated that other than that of and D-C, whose arrows
point to a decreasing equilibrium, the rest are asymptotically stable, and their equilibrium is increasing.
Future studies should consider formulating the proposed model with varied control parameters, such as
medication, to compare the results with those from first-order ode.

Existing studies have formulated many mathematical models for TB-Diabetes co-infection. However, the
discrete TB-Diabetes models still have research value. In the current study, a NSFD scheme for TB-Diabetes
co-infection is formulated. Numerical simulations are presented and compared with the corresponding
first-order ode. The results indicated that the first-order ode gives a higher approximated equilibrium
when compared to nsfd results. The observations suggest that nsfd could be more accurate compared to
first-order ode. The accuracy could be due to overly small step sizes needed to obtain stable equilibrium.
For instance, increasing h gives better results than lower h in the NSFD (see Figure 5). Although larger step
sizes can save computational time and memory, they could not give results prone to disease control recom-
mendations. Therefore, NSFD offers an alternative to establishing accurate results by determining optimal
h. Thus, scholars could rely on it to provide insightful recommendations for problems such as control-
ling tuberculosis and diabetes co-infection. The phase plane (see Figures 7-17) stability conditions different
compartments. The analysis is based on the convergence or divergence of the arrows from the equilibrium.
The results indicated that other than that of Lf -Ls, which is oscillatory, and D-C, whose arrows point to a
decreasing equilibrium, the rest are asymptotically stable, and their equilibrium is increasing. Future stud-
ies should consider formulating the proposed model with varied control parameters, such as medication,
to compare the results with those from first-order ode.
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